42 research outputs found

    Observation of Quantized Hall Effect and Shubnikov-de Hass Oscillations in Highly Doped Bi2Se3: Evidence for Layered Transport of Bulk Carriers

    Get PDF
    Bi2Se3 is an important semiconductor thermoelectric material and a prototype topological insulator. Here we report observation of Shubnikov-de Hass (SdH) oscillations accompanied by quantized Hall resistances (Rxy) in highly-doped n-type Bi2Se3 with bulk carrier concentrations of few 10^19 cm^-3. Measurements under tilted magnetic fields show that the magnetotransport is 2D-like, where only the c-axis component of the magnetic field controls the Landau level formation. The quantized step size in 1/Rxy is found to scale with the sample thickness, and average ~e2/h per quintuple layer (QL). We show that the observed magnetotransport features do not come from the sample surface, but arise from the bulk of the sample acting as many parallel 2D electron systems to give a multilayered quantum Hall effect. Besides revealing a new electronic property of Bi2Se3, our finding also has important implications for electronic transport studies of topological insulator materials.Comment: accepted by Physical Review Letters (2012

    Ambipolar Graphene Field Effect Transistors by Local Metal Side Gates

    Get PDF
    We demonstrate ambipolar graphene field effect transistors individually controlled by local metal side gates. The side gated field effect can have on/off ratio comparable with that of the global back gate, and can be tuned in a large range by the back gate and/or a second side gate. We also find that the side gated field effect is significantly stronger by electrically floating the back gate compared to grounding the back gate, consistent with the finding from electrostatic simulation.Comment: 4 pages, 3 figure

    Topological insulator based spin valve devices: evidence for spin polarized transport of spin-momentum-locked topological surface states

    Full text link
    Spin-momentum helical locking is one of the most important properties of the nontrivial topological surface states (TSS) in 3D topological insulators (TI). It underlies the iconic topological protection (suppressing elastic backscattering) of TSS and is foundational to many exotic physics (eg., majorana fermions) and device applications (eg., spintronics) predicted for TIs. Based on this spin-momentum locking, a current flowing on the surface of a TI would be spin-polarized in a characteristic in-plane direction perpendicular to the current, and the spin-polarization would reverse when the current direction reverses. Observing such a spin-helical current in transport measurements is a major goal in TI research and applications. We report spin-dependent transport measurements in spin valve devices fabricated from exfoliated thin flakes of Bi2Se3 (a prototype 3D TI) with ferromagnetic (FM) Ni contacts. Applying an in-plane magnetic (B) field to polarize the Ni contacts along their easy axis, we observe an asymmetry in the hysteretic magnetoresistance (MR) between opposite B field directions. The polarity of the asymmetry in MR can be reversed by reversing the direction of the DC current. The observed asymmetric MR can be understood as a spin-valve effect between the current-induced spin polarization on the TI surface (due to spin-momentum-locking of TSS) and the spin-polarized ferromagnetic contacts. Our results provide a direct transport evidence for the spin helical current in TSS.Comment: 10 pages, 3 figure

    Quantum and Classical Magnetoresistance in Ambipolar Topological Insulator Transistors with Gate-tunable Bulk and Surface Conduction

    Get PDF
    Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)(2)Te-3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials
    corecore